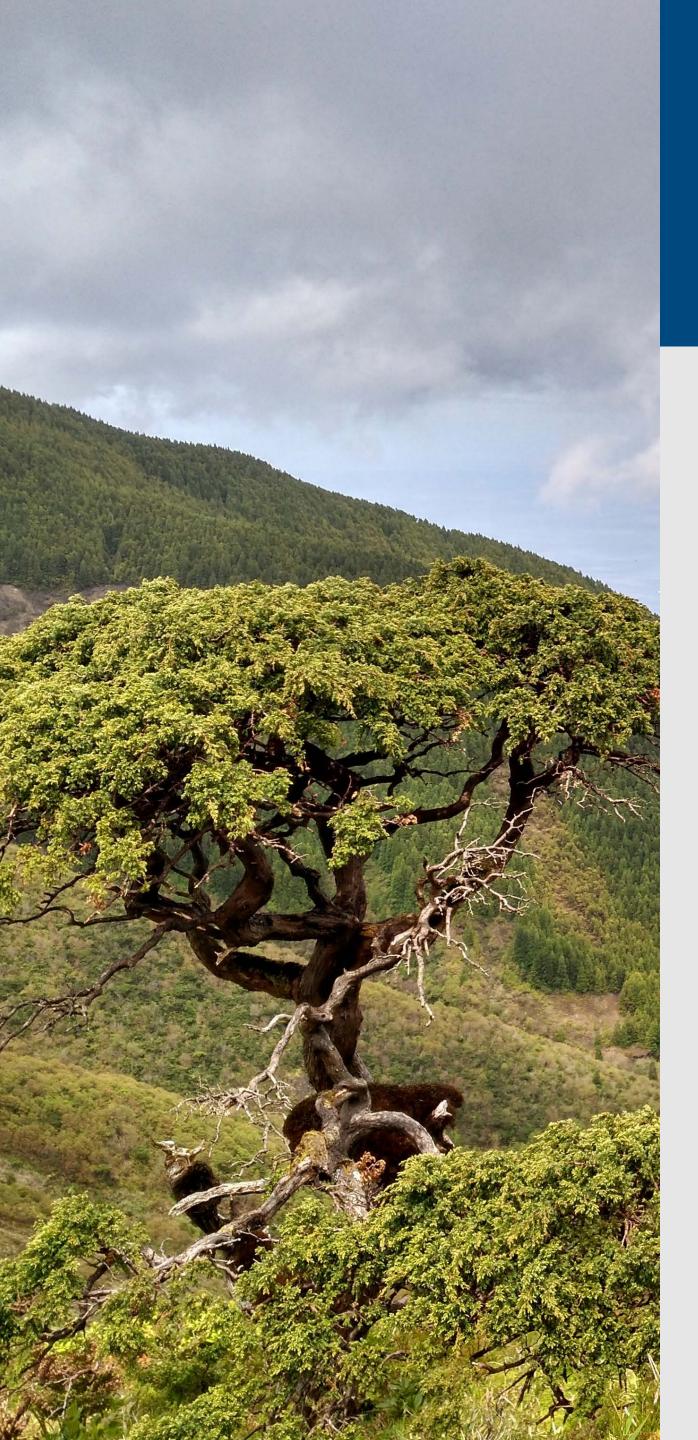


MOVE PROJECT

Supported by:

This project has received funding from the European Commission (Directorate-General for Environment), under the grant 07.027735/2018/776517/SUB/ENV.D2



BIODIVERSIDAD atlantica y SOSTENIBILIDAD

SUMMARY

Page 1 - MOVE project

Page 2 - MOVE methodology

Page 5 - Activity 1: Project coordination and management

Page 7 - Activity 2: Engaging stakeholders to assess the state of the art of MAES and prioritize project contributions

Page 10- Activity 3: Knowledge sharing and information repository

Page 15 - Activity 4: Facilitating MAES in Europe's Overseas

Page 25 - Activity 5: Outlining a MAES Strategic Plan for the EU Overseas

Page 31 - Activity 6: Communication, Dissemination and Outreach

Page 37 - MOVE deliverables

Page 38 - Partners

BASIC INFO

TITLE:

MOVE- Facilitating MAES to support regional policy in OVerseas Europe: mobilizing stakeholders and pooling resources

FUNDING:

DG ENV Call for Proposals ENV/2017/CFP/MAES OR OCT

TOTAL BUDGET:

1,060,781 €

EU CONTRIBUTION:

999,989 €

START DATE:

April 1, 2018

DURATION:

42 month

COORDINATION:

Fundo Regional para a Ciência e Tecnologia (FRCT), Azores, Portugal.

CONSORTIUM:

14 partners from 7 countries and 6 overseas entities.

The MOVE project is promoted by an heterogeneous consortium of 14 partners, based in 8 European Overseas entities (five ORs and three OCTs, covering 6 of the 7 biogeographical regions with European presence) and on 4 countries of the Europe mainland.

The project worked directly on a representative fraction of the European Overseas entities, mobilizing stakeholders on a personal basis, engaging them directly in face to face interviews and focal workshops. The continental partners were selected for their expertise in MAES, in order to provide a seamless integration with initiatives at the mainland level, allowing bilateral knowledge exchanges and capacity building.

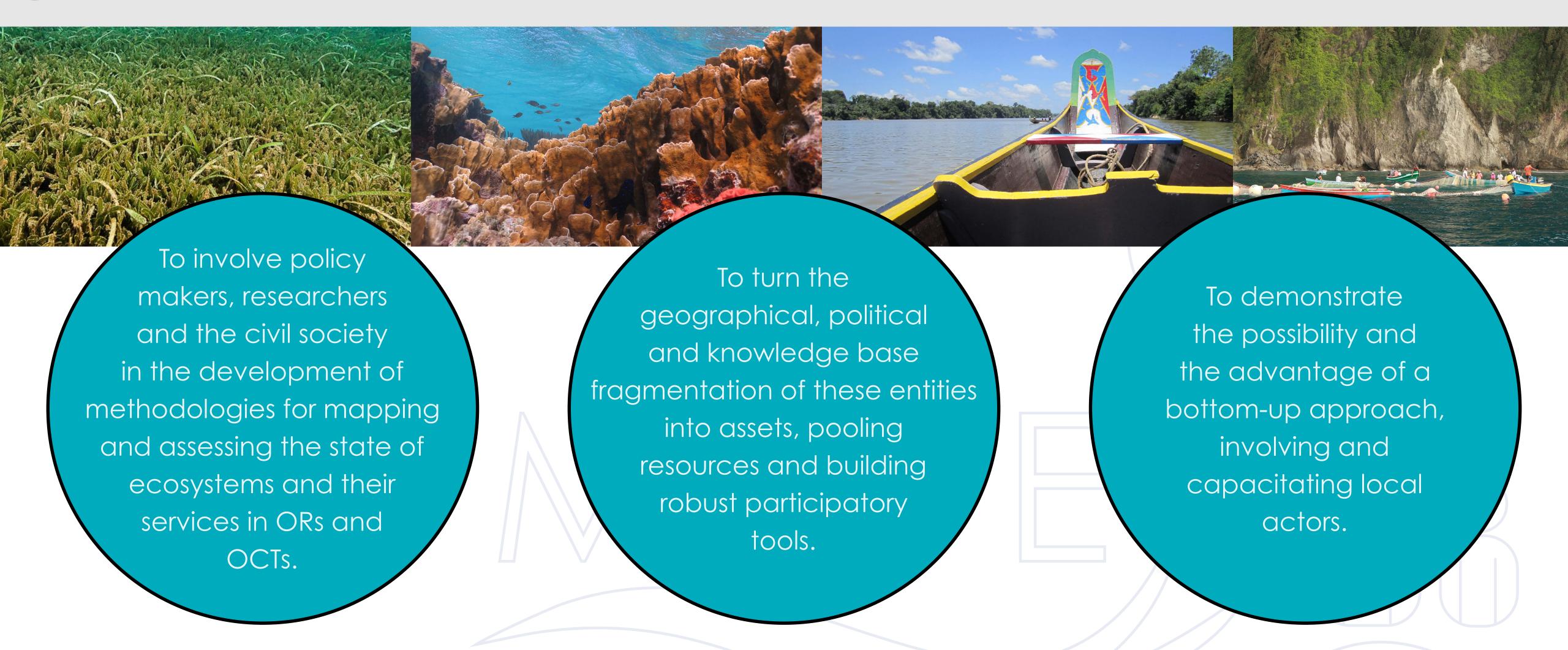
2 THE CHALLENGE

Action 5 of the EU Biodiversity Strategy urges Member States to map and assess the state of ecosystems and their services (MAES) in their national territory.

Europe's Outermost Regions (ORs) and Overseas Countries and Territories (OCTs) often seem to be overlooked in MAES efforts.

Europe's Outermost Regions (ORs)

The 9 ORs are located at distance from continental Europe but make up substantial parts of EU Member State's territories.


Overseas Countries and Territories (OCTs)

The 25 OCTs* are characterized by special bonds with EU Member States.

The EU Overseas mainly consist out of islands, spread through all corners of the globe. These territories contain unique flora and fauna: they host more than 70% of all EU biodiversity and include 20% of the world's coral reefs and lagoons. They encompass most diverse ecosystems on often very small scale. Nevertheless, general knowledge on island Ecosystem Services (ES) and especially how to map and assess them seems scarce.

3 OBJECTIVES

The MOVE project allowed to apply the most advanced tools and models to **test** and **implement** the **MAES methodology** in EU Overseas entities, **involving** and **capacitating** local actors to support the implementation of regional policies. The project provided **good practice guidelines** tailored for overseas specificities and needs, contributing to a worldwide EU leadership in this field.

MOVE Components and their interrelations

Coordination and integration

Policy

Activity 1&6

Project Coordination and Management Communication, dissemination and outreach.

Activity 5

Outlining a MAES Strategic Plan for the EU Overseas

Activity 4 Facilitating MAES in Europe's Overseas

Activity 2

Stakeholder engagement to assess the state of the art and prioritize project contributions

Activity 3

Knowledge sharing and information repository

Network creation

Research

MOVE Consortium

Coordinated by:

Supported by:

This project has received funding from the European Commission (Directorate-General for Environment), under the grant 07.027735/2018/776517/SUB/ENV.D2

Partners:

Activity LEADER

Fundo Regional para a Ciência e Tecnologia (FRCT)

This activity aims to ensure optimal implementation, coordination and integration of the project activities, through providing effective structures, tools and procedures for supervision of project progress, reporting, internal communication, and internal quality assurance.

Project coordination and management

Activity Leader

Partners

Technical & Financial management

Azores

* Canary Islands

S Dutch Caribbean

United Kingdom OTs in the South Atlantic

New Caledonia

La Réunion

Martinique

French Guiana

Meetings (KO, General Assemblies, WS, etc.)

Regional **Case Studies**

Activity LEADER Institut de Recherche pour le Développement (IRD)

This activity aims to assess the state of the art of MAES in the participating ORs and OCTs, mobilizing stakeholders in the definition of the case studies and specific contributions to be made by the project.

Engaging stakeholders to assess the state of the art of MAES and prioritize project contributions

Activity Leader

1. Stakeholders Reached

1000+ legal entities ::: 700+ individual stakeholders

Azores (25+)

Dutch Caribbean (200+)

UK South Atlantic territories (85+)

Martinique (75+)

Canary Islands (65+)

La Réunion (160+)

French Guiana (170+)

2. State of the Art of MAES

STAKEHOLDERS: Private sector, administrations, research institutes, universities and nongovernmental organizations

What is my perception about ECOSYSTEMS and their SERVICES?

> What is my relationship with ECOSYSTEMS and their SERVICES?

> > from the project?

MOVE Partners

Local knowledge

Geographical & Stakeholders data

Current situation of MAES

3. Stakeholders Engagement

in EU OverSeas: Selection of 8 Regional Case Studies

- Type/Representativeness of Ecosystems
- Involvement in MAES
- Stakeholders expectations related to MAES and MOVE

Engaging stakeholders to assess the state of the art of MAES and prioritize project contributions

State of the Art of MAES in ORs and OCTs

Great DIVERSITY of WORDS Clarification of ES CONCEPT:

ES DOMAINS of ACTIVITY:

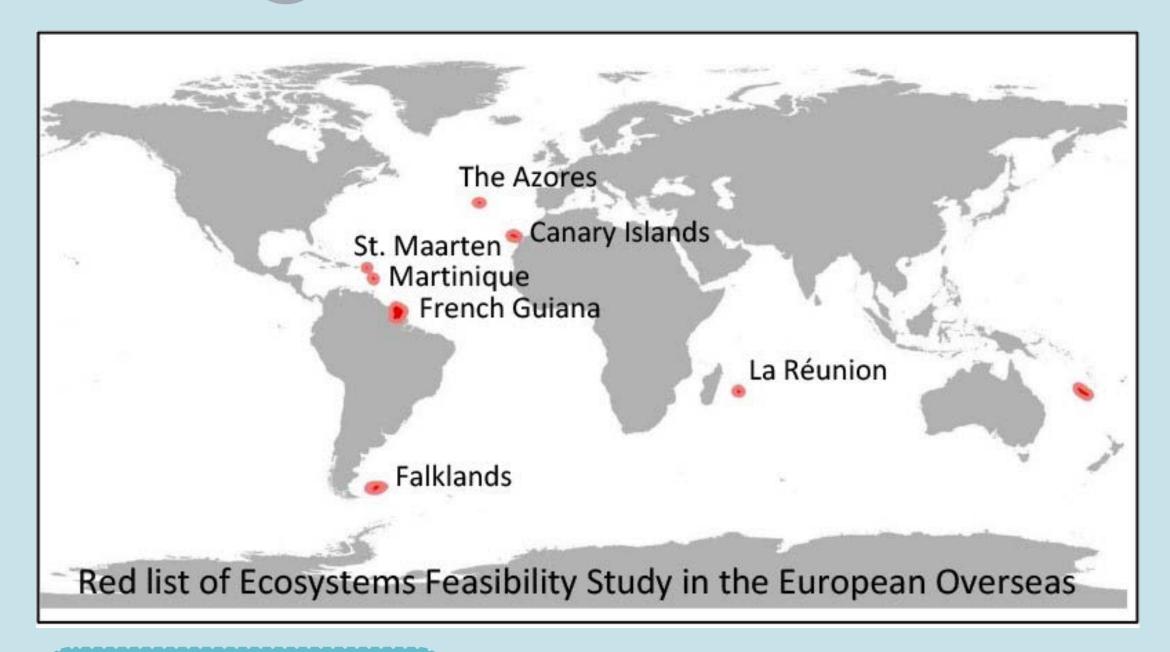
EXPLOITATION OF NATURAL RESOURCES

Main MAES implementation BOTTLENECKS:

Main EXPECTATIONS:

ES CLARIFICATION CONCEPT

MATERIAL AND HUMAN **RESOURCES**


PROJECTS COMBINING ENVIRONMENT/SOCIAL ISSUES

Stakeholders Engagement

Regional Case Studies

Terms of Reference

(1) Ecosystem Services addressed, (2) Problems & Goal, (3) Emblematic Ecosystems, (4) Methods, (5) Available Data, (6) Expected Results and (7) List of Main local/Regional Stakeholders.

Activity LEADER
Gottfried Wilhelm
Leibniz Universität Hannover (LUH)

This activity aims to share knowledge and capacities between the ORs and OCTs and Europe mainland. Information collected in the project is analyzed, integrated, synthesized and structured in order to fulfill the demands of MAES implementation in all EU member states, including the ORs and OCTs.

Activity Leader

Leibniz Universität Hannover

1. Existing/On-going Studies related to MAES

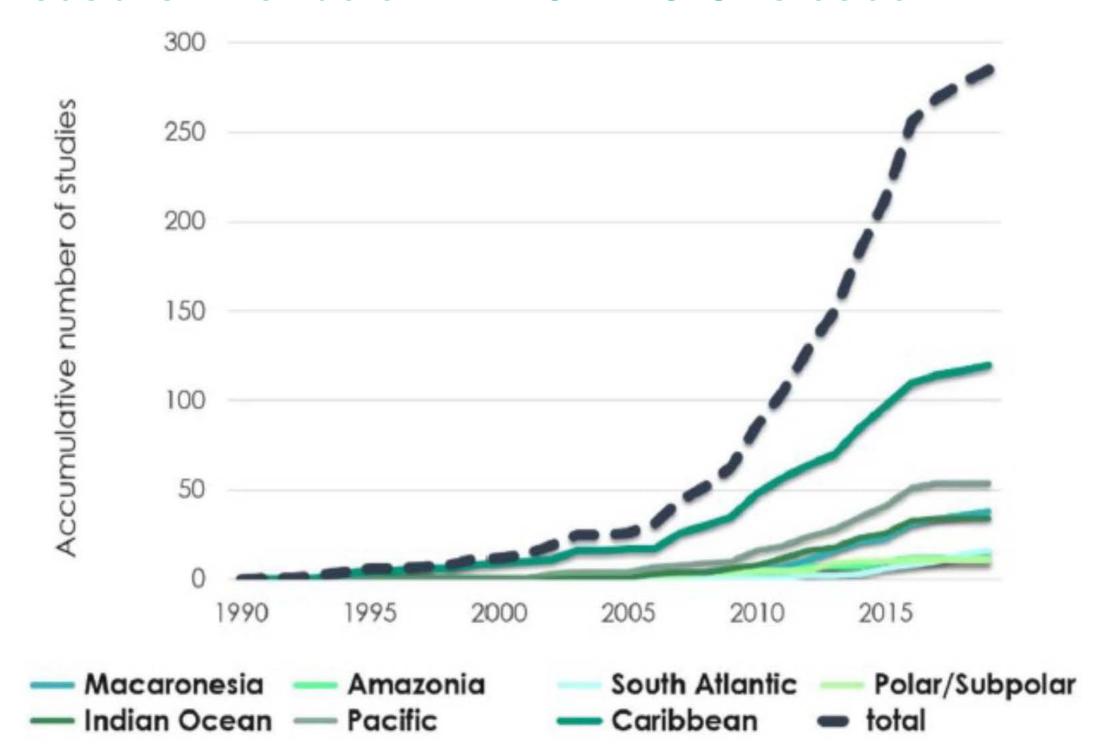
A. MAES literature review

270 papers

ORs & OCTS

B. STAKEHOLDER online survey

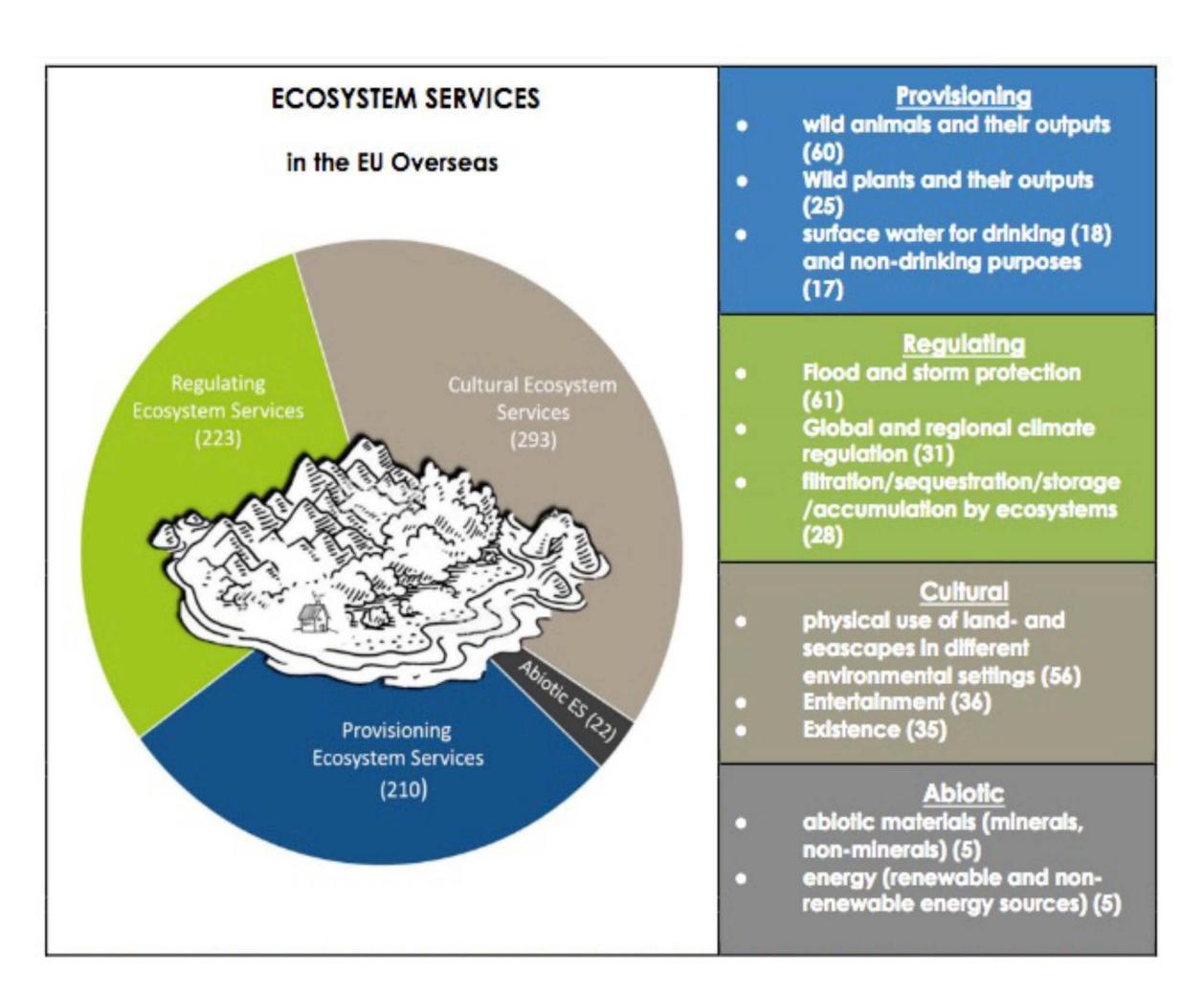
CONSORTIUM



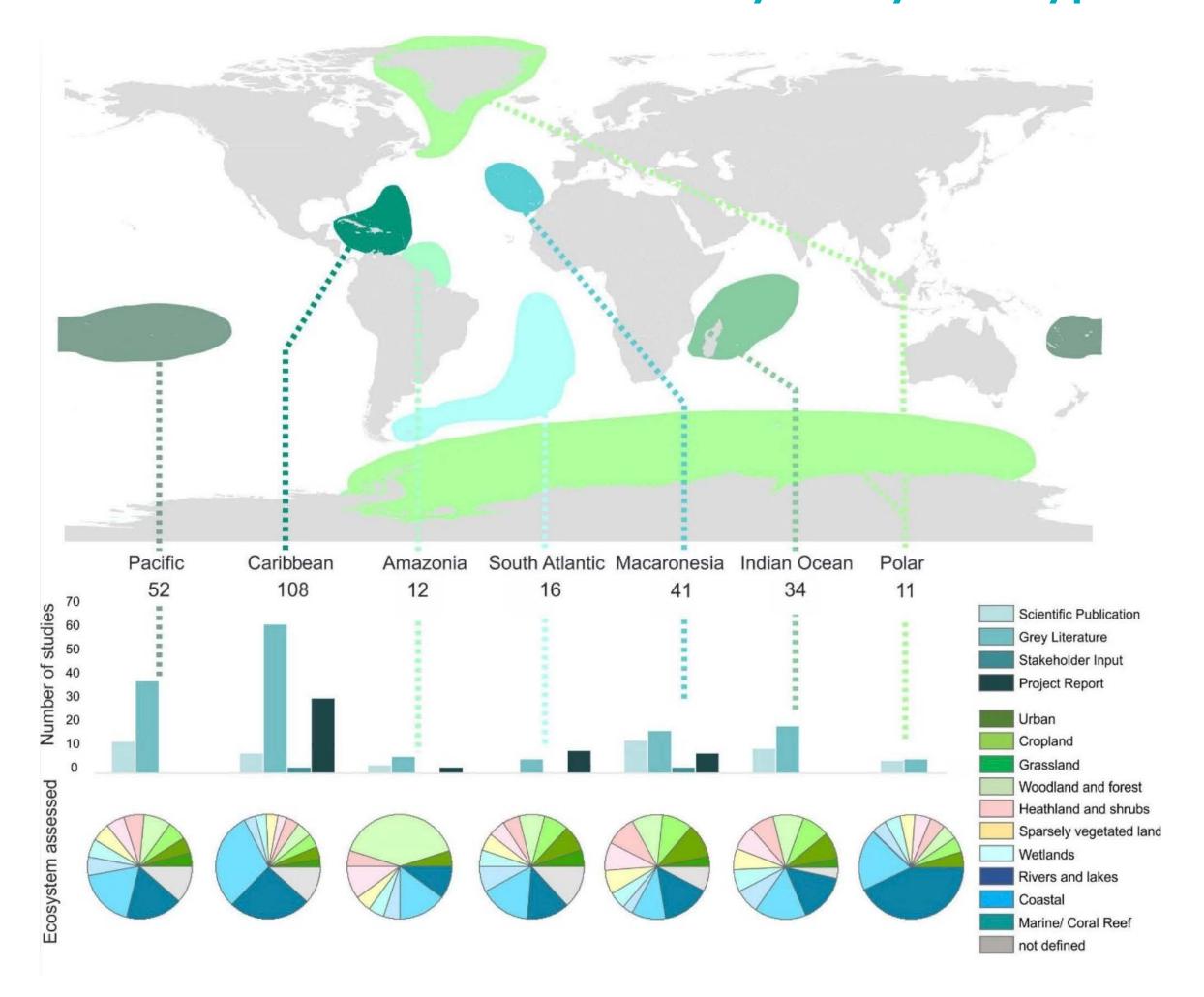
SIEBER ET AL. 2018

Research trends on MAES in EU Overseas

Integration EU MAES initiatives



Activity Leader



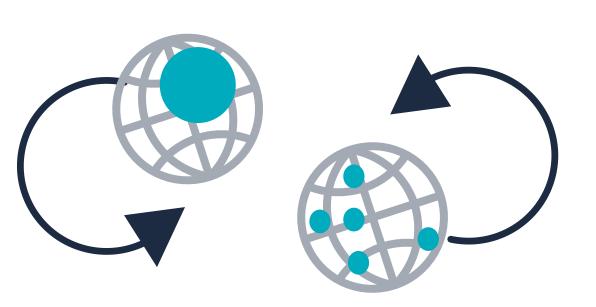
Leibniz Universität Hannover

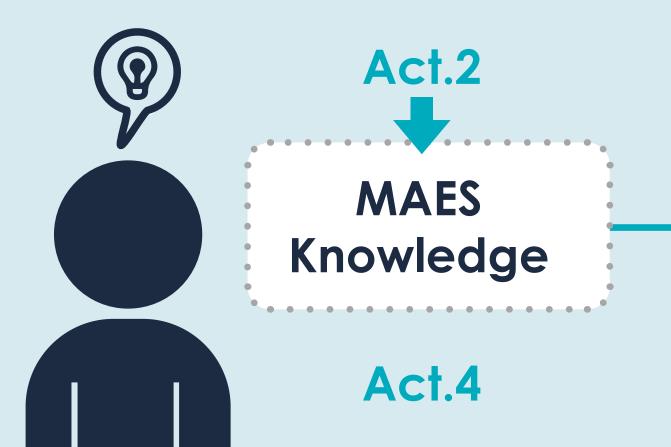
ECOSYSTEM SERVICES in the EU Overseas

Research overview EU overseas by Ecosystem types

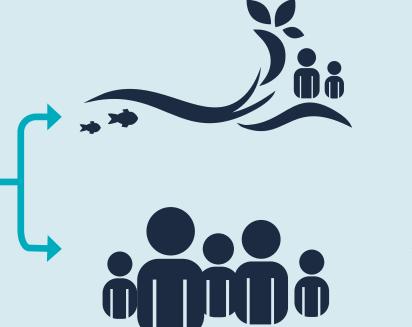
Knowledge sharing and information repository

Activity Leader


2. Knowledge Integration


- Integrating knowledge from MAES in the EU mainland and ORs and OCTs
 - MOVE Territories

 ORs & OCTS
- Create synergies and to make most use of efforts and available resources



Comparison of studies and methods between Europe Overseas and the European mainland

Ecosystem specificities

Socio-Cultural conditions

Knowledge sharing and information repository

Activity Leader

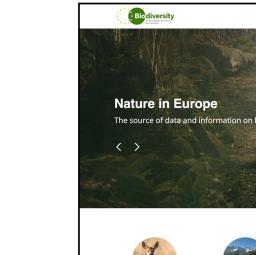
Leibniz Universität

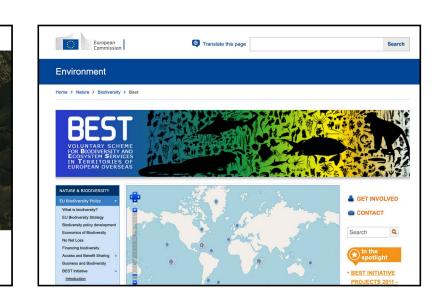
3. Knowledge Sharing

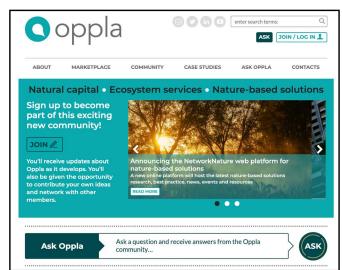
Transferring knowledge from EU mainland to EU ORs and OCTs and vice versa

e-forum Act.3

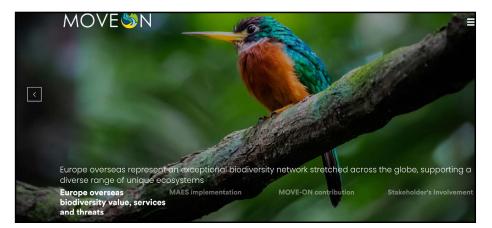
Webinar Series Case Studies - Act.4




Help raise awareness of the specificities of EU Overseas for MAES and biodiversity



External knowledge sharing: networks, conferences, etc.

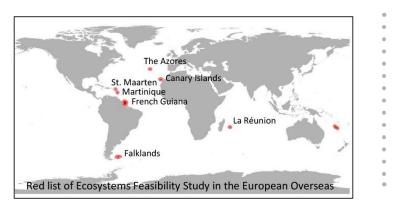


Fulfil the tasks of the Biodiversity Strategy's Action 5 in all EU member states including ORs and **OCTs**

Workshops, moderated online discussion forums, webinars etc.

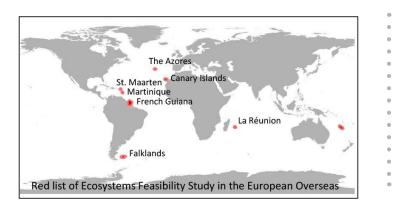
ACTIVITY

Activity LEADER

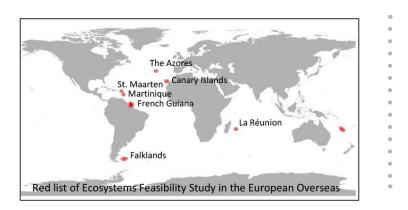

Fundo Regional para a Ciência e Tecnologia (FRCT)

This activity aims to develop and test the feasibility of MAES in Europe's Overseas through collaborative and multidisciplinary approaches.

Task 4.1. Develop and Test Mapping Tools

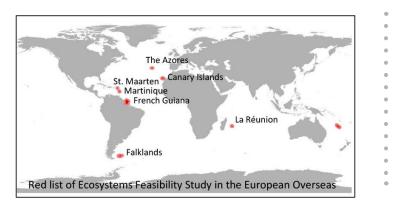

This task aims to develop and test mapping tools in each of the seven Case Studies regions by implementing diverse mapping tools and using the multidisciplinary current state-of-the-art in MAES, the available data, and the most advanced tools and models for mapping, assessing, monitoring, and valuating ecosystem services in the participating regions.

Activity Facilitating MAES in Europe's Overseas


Task 4.1. Develop and Test Mapping Tools

Case Study Region	Habitats	Ecosystem Services	Tools	Booklets	Webinars
Azores	• Terrestrial habitats Terceira Island	 Recreation Pollination Carbon storage Nutrient delivery ratio Sediment delivery ratio Flow retention 	 Use of three geodatasets (Corine LULC, Official LULC map Quantification of ES using InVEST models Statistical analysis of inVEST model results 		
Falkland Islands	• Macrocystis Kelp	 Blue Carbon stock Blue Carbon sequestration Nutrient cycling Commercial fisheries Alginate production 	 Extent identification using Sentinel-1 and -2 imagery, Landsat 8, topographic monitoring and in-situ data Kelp density estimation Use of published ES economic valuation 		
Canary Islands	• Cymodocea nodosa	Commercial fisheries	 Habitat suitability mapping Value transfer methodology 		

18 Activity Facilitating MAES in Europe's Overseas

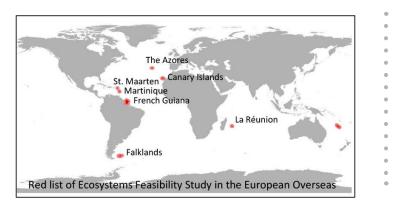


Case Study Region	Habitats	Ecosystem Services	Tools	Booklets	Webinars
St. Maarten	 Seagrass communities Coral reef Mangroves 	 Commercial fisheries Tourism activities Carbon Sequestration 	 Calculation total ecosystem size based on polygon area Determining monetary value of ecosystem service Quantifying economic value of ecosystem service based on a set of parameters for spatial allocation 		
Réunion Island	 Marine/coastal and terrestrial ecosystems integration 	• Full ES spectrum	 Use of already available habitat maps Identification ecosystem spatial units in oceanic water-masses 		
Martinique	• Coral reefs	Coastal protectionNutrient uptakeFish Biomass production	 Link ecological condition indicators with ES provision Monetary valuation 		
French Guiana	 23 different ecosystem types present in Guiana shield 	Broad range of Ecosystem Services	 Matrix method based on expert consultation Quantification of ES using InVEST models and LULC data (2005 – 2015), Forest inventory, Biomass data and Habitat maps 		

- Direct engagement of stakeholders in the assessment and final validation of "Regional Case Studies" results, with the direct support of project's local partners and scientific board.
- Participative validation by local stakeholders of mapping tools, including model's explanation and final maps.
- Webinars + workshops + MOVE questionnaire.

7 Regional Case Studies

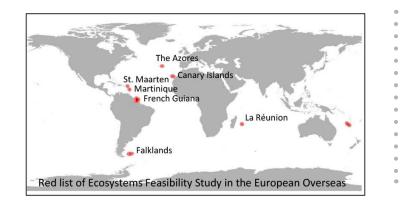
1 Cross-Regional Case Study: Red List of Ecosystems Feasibility Study in the European Overseas



e-Surveys

Facilitating MAES in Europe's Overseas

Best Practices Guidelines



Based on stakeholders' **perception** and feedback gathered in the present study, a few considerations can be pointed out as a **compilation** of important **traits of MAES**, and relevant **criteria** to consider when using and producing this particular tool. Main ideas of this consultation can be used to propose a guidance on **Best Practices** to: (i) **design** and program proper methodological approaches, (ii) **optimize** MAES outputs and (iii) **rise** MAES relevance and impacts.

(i). Considerations when designing MAES methodologies:

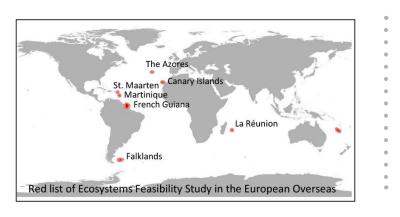
- Consider a broad range of ES.
- Properly contextualize island environments.
- When possible, rely on existing data, aiming for proper coverage and accuracy to facilitate comparisons among different regions.
- Take into account the human impacts on ecosystems and focus efforts to develop tools that allow constant monitoring of pressures on the environment.
- Include socio-cultural and socio-economic variables.
- MAES procedure need to be socially and culturally framed and carefully implemented.
- Identify sites of greatest importance for relevant ES to better comprehend the services provided by natural areas and better identify activities that are compatible with the services of the concerned areas.
- Include a clear identification of the proposed objectives.
- Ensure stakeholders involvement.
- Ensure the use of quality baseline data.

(ii). Recommendations to optimize the pertinence of MAES outputs:

- Seek for simplicity and easy interpretability to expand the capabilities of these tools to reach policy makers.
- Always validate results with ground truth before making the study available to the public and start any discussion.
- Develop high-resolution ecosystem, habitats, species and ES maps.
- Consider future projections to define pertinent management plans.

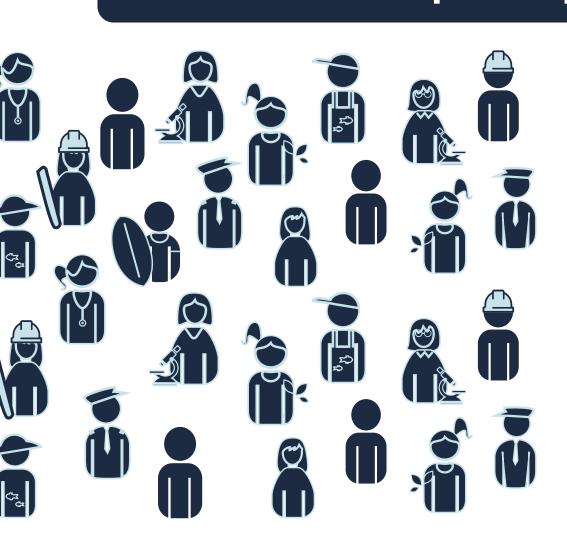
(iii). In order to rise its relevance and impacts on society and policy makers, MAES procedures must seek for:

- Pooling information and resources between different institutions.
- Securing the availability of produced databases and summary documents.
- Facilitating the availability of environmental spatial information to reach society.
- Reaching a methodological agreement in ES assessment to open a road for regional cross comparability of MAES with previous assessments.
- Relying on proper funding to secure its application and communication to enhance its capabilities to reach society and highlight and share the importance of its application.
- Avoiding the use of MAES as a stand-alone tool, in order to avoid potential missuses leading to the capitalization of natural resources and enhancing its capabilities when dealing with particular aspects of conservation, mainly the conservation of rare species.


Task 4.2. Test & Assess Science-Policy Interface tools

This task aims to review, compare, and identity decision support tools (DSTs) for the MAES that can potentially promote public participation, support decisionmaking for the design and implementation of ecosystems servicesbased public policies, and ES spatial planning in EU OCTs/ORs.

Facilitating MAES in Europe's Overseas



Task 4.2. Test & Assess Science-Policy Interface tools

1. Stakeholder participation in environmental planning

- Forms of Participation: (i) Institutional participation (top-down) (ii) Spontaneous informal participation (bottom-up).
- Stakeholder Participation: (i) citizen role (ii) customer role and (iii) partner role.
- Degrees of Stakeholder Participation: (i) Providing information (ii) co-controlling a decision.
- Advantages & Risks: (see table below)
- Principles & Challenges of Participatory Spatial planning: Set of stakeholders engaged in a collective decision-making process to improve the de-

- mocratic deficit and the adequacy and effectiveness of spatial planning decisions.
- Role of Maps: Communication, interaction and transmission of knowledge between people being one of the most essential elements in the spatial planning process.
- Public Participatory Geographic Information System (PPGIS): Communication tools contributing dynamic participatory process within territorial decision-making processes.

Better trust in decisions

Improving project design using local knowledge

- Better understanding projects and issues
- Integration of various interests and opinions
- Optimizing implementation of plans and projects
- Public acceptance of the decisions
- Fostering and developing social learning

RISKS

- Expensive process
- Time-consuming process
- Potential stakeholder frustration
- Identification of new conflicts
- Involvement of stakeholders who are not representative
- Empowerment of an already important stakeholder

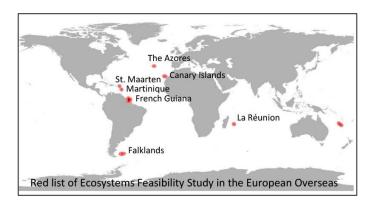


Table 1: DSTs and assessement criteria for OCTs/ORs (adapted from Bagstad et al., (2013)).

Targeted sector or ecosystem when developing the DST		re and rural opment	Marine and coastal	Conservation and protected areas	Spatial planning		Mu	Itiple	
DSTname DSTname	Daisy	CropSyst	SeaSketch	MARXAN	GEOMOD	InVEST	ARIES	MIMES	Solves
A. General assessment criteria s (adapted from Bagstad et al. 2013)									
A1. Quantification and uncertainty	Х	Х	Х	Х	Х	Х	Х	Х	Х
A2. Time requirements (lowest			Х	Х	Х	Х			
A3. Capacity for inde pendent application	Х	Х	Х	Х	Х	Х	Х	Х	Х
A4. Level of development and documenta tion	Х	Х	Х	х	Х	Х	Х	Х	Х
A5. Scalability	Х	Х	Х	Х	Х	Х	Х	Х	Х
A6. Generalizability	Х	×	Х	Х		Х	Х	х	Х
A7. Nonmoneta ry and cultural perspectives (moneta ry and non-moneta ry)			Х						Х
A8. Affordability	Х	Х	Х			Х	Х	Х	Х
B. Relevant for sectors and ecosytems occcuring in Ors and OCTs (adapted from Grêt-Rega	mey et al., 201	7)							
B1. Agriculture and rural development	Х	×	Х		Х	Х	Х	х	Х
B2. Marine and coastal (including fisheries)			Х	Х	Х	Х	Х	х	Х
B3. Spatial planning			Х	х	Х	Х	Х	Х	Х
B4. Conservation and protected areas			Х	Х	Х	Х	Х	Х	Х
B6. Multiple			Х		Х	Х	Х	х	Х
C. Relevant for specific ES management sequence (adapted from Bagstad et al. 2013)		•							
C1. Screening			Х						
C2. Mapping and assessment	Х	Х		Х	Х	Х	Х	Х	Х
C3. Valuation (monetary and nonmonetary)						Х	Х	Х	Х
C4. Planning and management			Х	Х	Х				

Activity LEADER
University of Portsmouth (UoP)

This activity aims to review the performance of the MAES tools and procedures tested, and the major constraints for their implementation. To integrate the lessons learned during the project in a proposed Strategic Plan for MAES in ORs and OCTs.

Activity Leader

Task 5.1. Assessment of the performance of MAES tools & Approaches

Identification of policy needs and gaps in each MOVE Case Study region and selection the most appropriate tools to address the policy needs.

Development and application of a performance matrix to assess the **effectiveness**, **efficiency** and **sustainability** of MAES tools and approaches to facilitate MAES implementation in EU Overseas."

Effectiveness

Efficiency

Sustainability

Tools contribute to reach the objectives and planed results?

Tools allow to deliver results in timely and economic way?

The net benefit of the tools continues, or are likely to continue? Need for flexible, guidance-based ES mapping and assessment approaches in the EU Overseas.

Selection of MAES tools that are cost-effective, increase awareness, cover the biophysical, economic, and social-cultural components of the MAES assessment.

Spatial proxy methods Contingent valuation

Travel cost Process-based models Statistical models

Participatory valuation Preference assessment Daisy

Market price Choice modelling

MIMES Value Integrated modelling Transfer Participatory GIS

Replacement cost

scenario planning CropSyst TELSA
Photo-elicitation surveys

SeaSketch InVE

/EST ARIES

SolVES

MARXAN

MAES tools applied for modelling and multi-tiered approaches, covering marine and terrestrial ecosystems, and including stakeholders from multiple disciplines and sectors

PERFORMANCE MATRIX FOR TOOLS & APPROACHES SELECTED

Activity Leader

Mapping & Science-Policy interfaces Tools

Activity

Needs

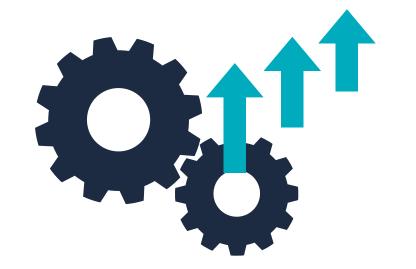
Activity Activity

Performance
Matrix
according to
needs (D.5.1)

	Tools	Effectiveness	Efficiency	Sustainability
8	Spatial proxy methods			
Biophysical	Process-based models			
	Statistical models			
ă	Integrated modelling			
	Choice modelling			
	Market price			
jm Si	Travel cost			
Economic	Contingent valuation			
<u> </u>	Participatory valuation			
	Replacement cost			
	Value Transfer			
-	Participatory GIS			
Socio-Cultural	Participatory scenario			
ું	planning			
ocic	Preference assessment			
Š	Photo-elicitation surveys			
	Daisy			
_	CropSyst			
por	SeaSketch			
Decision-Support	MARXAN			
io	TELSA			
ecis	InVEST			
Δ	ARIES			
	MIMES			
	Solves			

This study aimed to display the most appropriate methods/tools to address the policy needs expressed by local stakeholders. Those needs are certainly not exhaustive, and other tools and approaches might be more appropriate in a given context regarding data availability, technical skills, time, and budget.

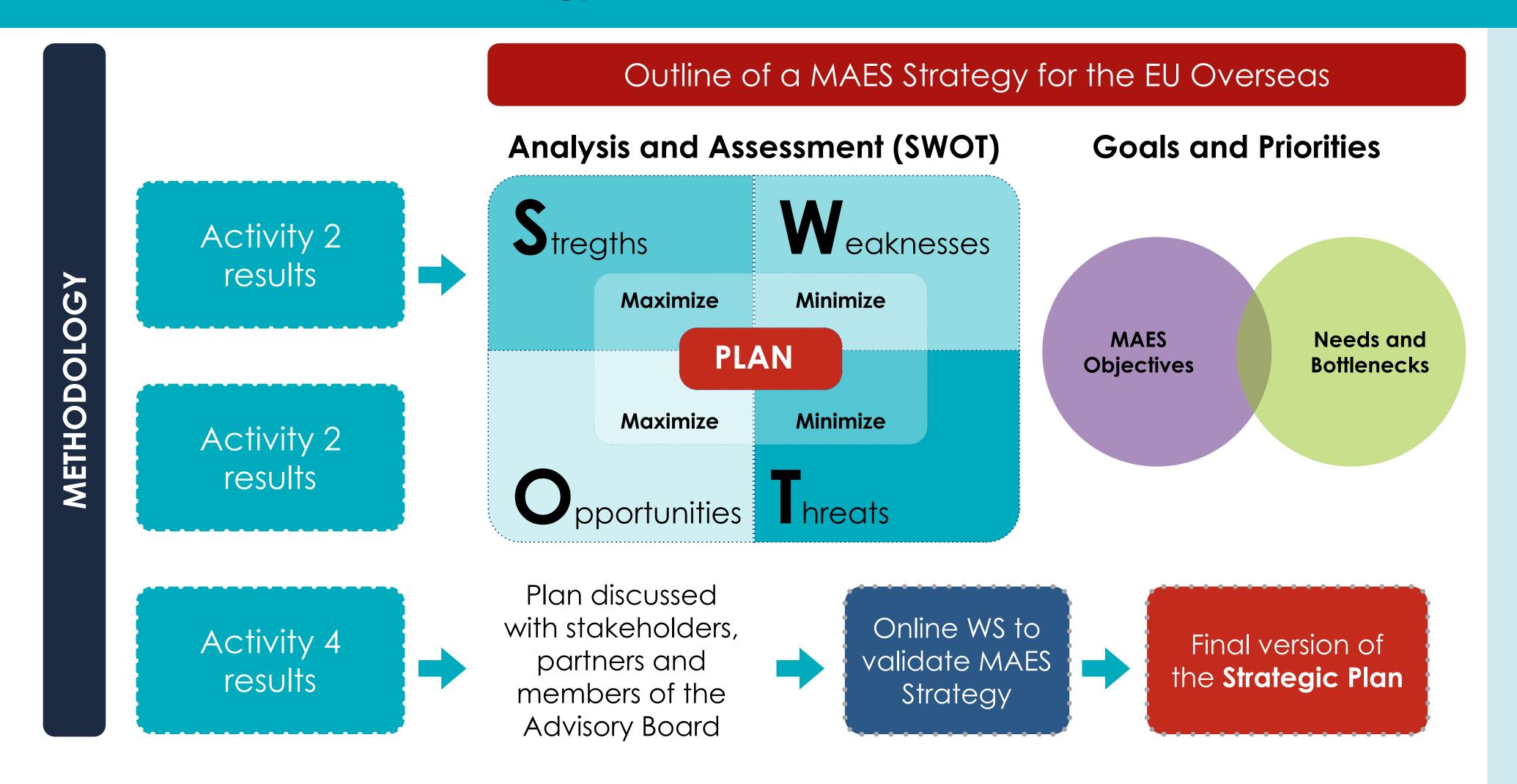
2. Majors constraints & solutions for MAES tools & Approaches implementation


Constraints (cognitive, organisational and political difficulties) to the uptake and presence of ES in public policies and policy practices & Feasible Solutions tailored for each EU Overseas (ORs & OCTs) regions regarding tools usefulness, easiness of their implementation and their potential use in the future.

Major problems for the uptake of ESs in public decisions

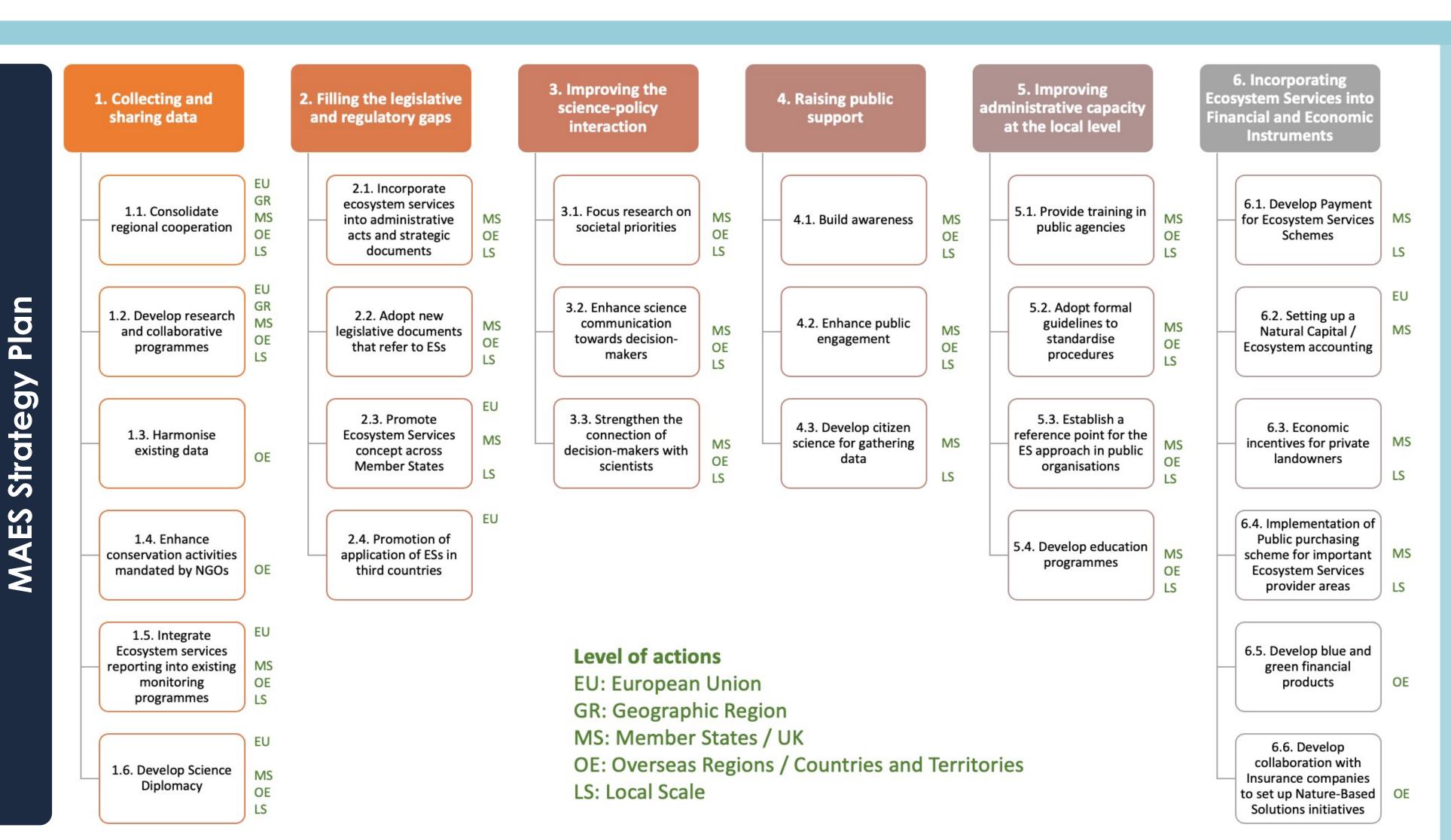
- Conceptual Innovation: Novelty and complexity of the ES concept.
- Administrative Capacity: The weak in-house capacity, understood in terms of expertise and personnel about ES.
- Political Coordination: The weak coordination, both along a horizontal and a vertical political dimension
- Scientific Advice: The science-policy interface varies a lot across the overseas entities with null o scarce scientific input/ interaction Science-Policy-NGOs.
- Clashes with vested Interests: important socio-political implications that might slow down the uptake of ESs in public decision-making.

Improvement Areas for the uptake of ES in decision-making


- Promoting legislative reforms
- Aligning science advice with socio-political priorities
- Targeting science communication to decision-makers
- Enhancing public engagement
- Strengthening organisational capacity

Activity Leader

Task 5.3. Outline of MAES Strategy


MAES Strategic Plan for the EU Overseas

builds on the assessment of needs and bottlenecks conducted on MOVE Case Study regions, involving local actors in its development process, to guide local policies and interventions from the Member States and the European Union.

Activity Leader

- The outline of the MAES
 Strategy Plan for the EU
 Overseas is structured
 in six components.
- No all solution in this Strategic Plan can be applied for all ORs and OCTs. Rather, tailor-made solutions, respecting the specificities and contextual conditions of the individual islands and Member States, are needed.
- The Strategy does not constitute an official strategy, politically endorsed by the EU Overseas. It will need action and coordination at a higher political level.

Activity

BIODIVERSIDAD ATLANTICA Y SOSTENIBIUDAD

Activity LEADER Asociación Biodiversidad Atlántica y Sostenibilidad (ABAS)

This activity aims to ensure effective communication and dissemination actions, raising public awareness about Ecosystem Services as well as informing stakeholders, MAES specialists worldwide and general society about the outcomes of the project.

Communication, Dissemination and Outreach

Activity Leader

BIODIVERSIDAD attantica Y SOSTENIBILIDAD

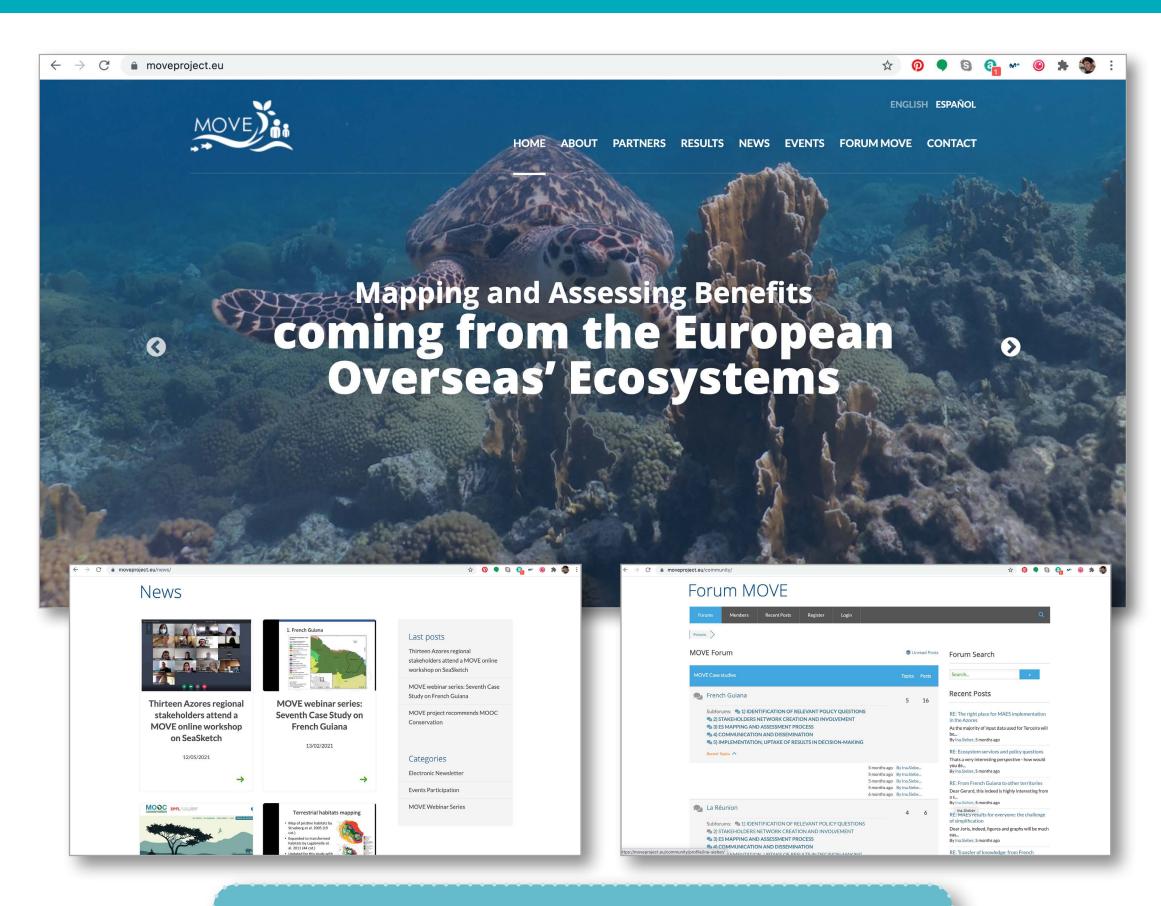
Project Toolkit

Logotype & visual identity

Document templates

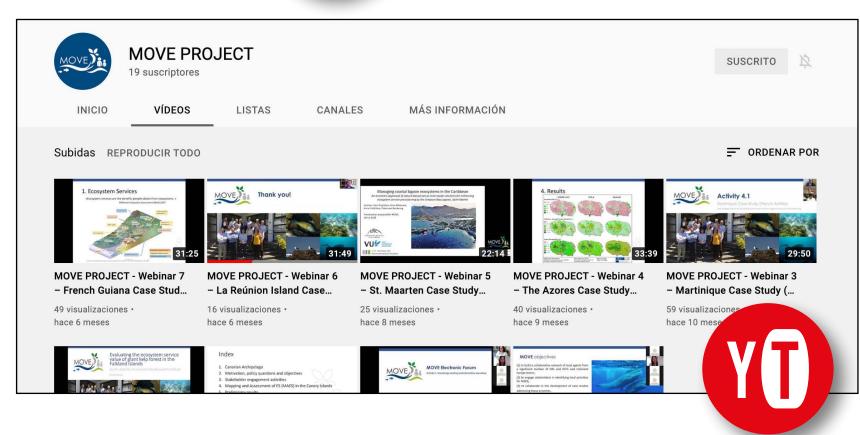
Project factsheet

Project roll-up display



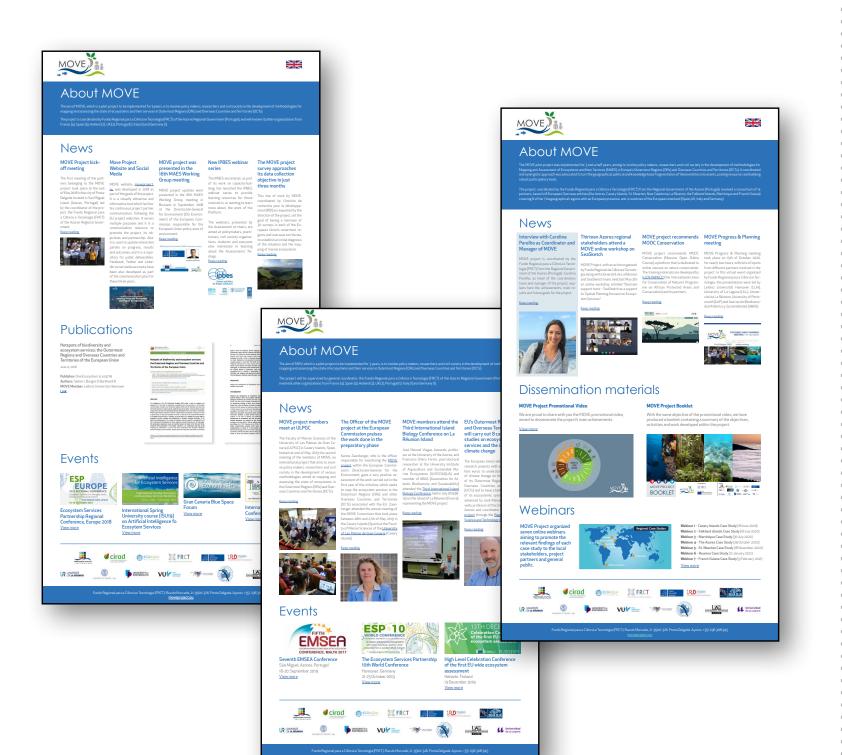
Communication, Dissemination and Outreach

Website in English and Spanish


www.moveproject.eu

Social media

Communication, Dissemination and Outreach



Dissemination Materials

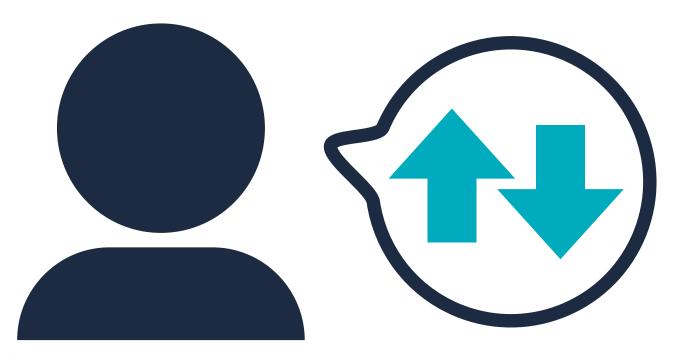
I. Newsletters

II. Webinars

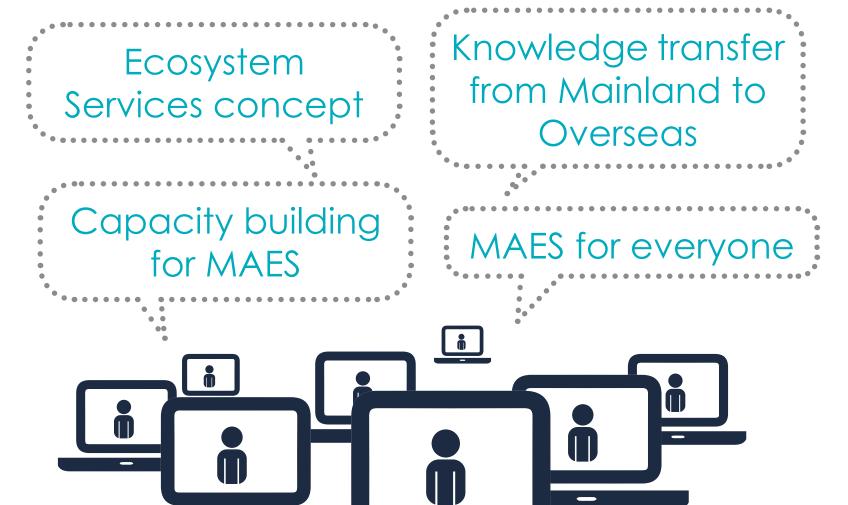
Communication, Dissemination and Outreach

Activity Leader

Dissemination Materials



Red list of Ecosystems Feasibility Study in the European Overseas


The study identified the state of the knowledge on Ecosystem Status, based on the IUCN Red List of Ecosystems global standard and data needs as well as major barriers for 1) conducting RLE assessments in EU ORs and OCTs, and 2) promoting those for conservation and ecosystem management purposes.

A tool to facilitate the dialogue among the stake-holders and the project partners.

Communication, Dissemination and Outreach

BIODIVERSIDAD attantica Y SOSTENIBILIDAD

Dissemination Materials

V. Move Project promotional video

VI. Move Project booklet

RESULTS: MOVE DELIVERABLES

- D.1.1 Signed Consortium Agreement
- D.1.2 Advisor Board Nomination
- D.1.3 Progress report and Financial report
- D.2.1 List of institutional and individual stakeholders of MAES
- D.2.2 Report on the State of the Art of MAES in the participating regions
- D.2.3 Justification of the regional Case Studies and Terms of Reference
- D.3.1 Research on mapping and assessment of ecosystems and their services
- D.3.2 Guidelines for knowledge sharing and integration.
- D.3.3 Electronic forum
- D.4.1 Reports of the development application and participative validation of mapping tools
- <u>D.4.1.2 Technical report on best practices guidelines for mapping assessing valuating and monitoring of terrestrial ecosystem services</u>

- D.4.1.3 Technical report on best practices guidelines for mapping assessing valuating and monitoring of coastal marine ecosystem services
- D.4.2.1 Review of available science policy interface tools
- D.4.2.2 Technical report on best practices guidelines for casting and profiling ecosystem services management tools
- D.4.2.3 Technical report on impact assessment and best practices guidelines for implementing spatially science policy interface tools
- D.5.1 Report on the adequacy of tools and approaches to current policy and gaps
- D.5.2 Report on constraints and solutions for the implementation of MAES process and tools
- D.5.3 MAES Strategy for the EU overseas 6.1.1
- D.6.1 Identity toolkit
- D.6.1.2 Website
- D.6.1.4 Project Factsheets

38 MOVE TEAM ::: PARTNERS

Fundo Regional para a Ciencia e Tecnologia (FRCT)

Gisela Nascimento Project Coordinator

Carolina Parelho Project Manager

Marta Vergilio Project Manager

Artur Gil Project Technical & Scientific Coordinator

José Azevedo Honorary Collaborator

Miguel Vieira Financial Manager

University of La Laguna

Laura Martin

Manuel Arbelo

Pedro Hernández

Enrique Casas-Mas

Wolfs Company

Elena Palacios

Viviana Luján

39 MOVE TEAM ::: PARTNERS

Institut de Recherche pour Le Développement

Espérance Cillaurren

David Gilbert

South Atlantic Environmental Research Institute

Tara Pelembe

Teresa Bowers

Gottfried Wilhelm Leibniz Universität Hannover

Benjamin Bruckard

UNIVERSITÀ DI TRENTO

Ina Sieber

Universitá degli Studi di Trento

Paula Rendon

UNIVERSITÉ DE LA RÉUNION

Nova Blue Environment

Université de

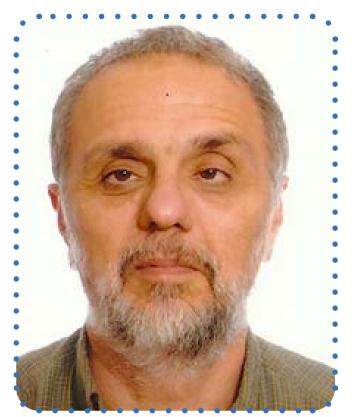
la Réunion

Blal Adem Esmail

Davide Geneletti

Jarumi Kato Huerta

Erwann Lagabrielle


Jean-Philippe Maréchal

40 MOVE TEAM ::: PARTNERS

BIODIVERSIDAD ATLANTICA Y SOSTENIBILIDAD

Asociación Biodiversidad Atlántica y Sostenibilidad (ABAS)

Ricardo Haroun

Fran Otero-Ferrer

Beatriz Díaz

University of Portsmouth Higher Education Corporation

Pierre Failler

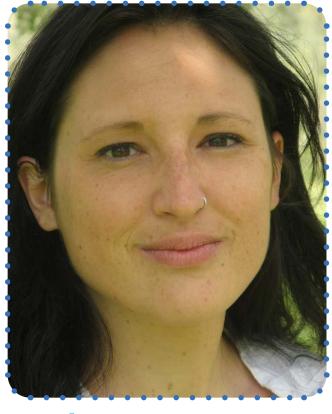
Ewan Trégarot

Gianluca Ferraro

Universidad Autónoma de Madrid

Centre de Coopération Internationale en Recherche Agronomique pour Le Développement

Vrije Universiteit Amsterdam Institute For Environmental Studies (IVM), Faculty of Science


Fernando Santos

Miriam Montero

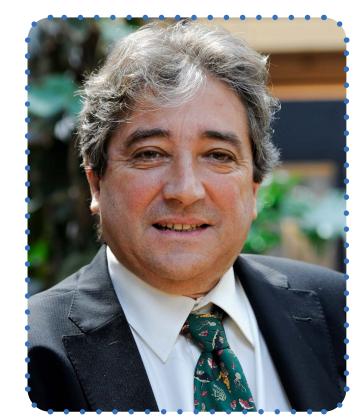
Aurélie Dourdain

Géraldine Derroire

Pieter van Beukering

Hanna Dijkstra

41 MOVE ADVISORY BOARD


Ciprian Ionescu

Evangelia (Valia) Drakou

Mario V Balzan

Ricardo Serrão Santos

